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ORIGINAL ARTICLE 

Using multiple imputation to assign pesticide use for 
non-responders in the follow-up questionnaire in the 
Agricultural Health Study 
Sonya L. Heltshe1’2, Jay H. Lubin1, Stella Koutros~, Joseph B. Coble~, Bu-Tian Ji~, Michael C.R. Alavanja~, Aaron Blair1, Dale R Sandier3, 

Cynthia J. Hines4, Kent W. Thomass, Joseph Barker6, Gabriella Andreotti~, Jane A. Hoppin3 and Laura E. Beane Freeman~ 

The Agricultural Health Study (AHS), a large prospective cohort, was designed to elucidate associations between pesticide use 

and other agricultural exposures and health outcomes. The cohort includes 57,310 pesticide applicators who were enrolled 

between 1993 and 1997 in Iowa and North Carolina. A follow-up questionnaire administered 5 years later was completed by 

36,342 (63%) of the original participants. Missing pesticide use information from participants who did not complete the second 

questionnaire impedes both long-term pesticide exposure estimation and statistical inference of risk for health outcomes. 

Logistic regression and stratified sampling were used to impute key variables related to the use of specific pesticides for 20,968 

applicators who did not complete the second questionnaire. To assess the imputation procedure, a 20% random sample of 

participants was withheld for comparison. The observed and imputed prevalence of any pesticide use in the holdout dataset 

were 85.7% and 85.3%, respectively. The distribution of prevalence and days/year of use for specific pesticides were similar 

across observed and imputed in the holdout sample. When appropriately implemented, multiple imputation can reduce bias 

and increase precision and can be more valid than other missing data approaches. 

Journal of Exposure Science and Environmental Epidemiology (2012) 22, 409-416; doi:l 0.1038/jes.2012.31; published online 9 May 2012 

Keywords: agriculture; cohort studies; missing data; pesticides; precision 

INTRODUCTION 

Missing data is a common problem in epidemiological studies and 
the statistical implications of ignoring missing data are well 
known, including loss of statistical power and potentially biased 
estimates of association. The multiple imputation technique~ is an 

approach whereby the investigator replaces each missing value 
with several plausible values sampled from a probability distribu- 
tion, conducts multiple analyses for replicate datasets built from 
each plausible value, then combines the multiple results to 
account for the fact that the replacement data were imputed. 
Multiple imputation has been widely accepted and has been used 
to account for missing data in large national surveys and studies, 
including NHANES 111,2 National Assessment of Educational 
Progress,3 Children’s Mental Health Initiative,4 and the Framing- 
ham Heart Study;5 however, detailed accounts of the application 

of multiple imputation and particularly the evaluation and 
validation of the methods are not often published. This paper 
demonstrates a practical implementation of multiple imputation 

and is vital for investigators of the Agricultural Health Study (AHS). 
The AHS is a prospective cohort study designed to evaluate the 

effect of agriculturally related exposures on health outcomes. The 
study includes 57,310 licensed pesticide applicators from Iowa and 
North Carolina, as well as 32,345 spouses of licensed applicators, 

who are not included in this imputation. In Iowa, both private 
applicators, who are primarily farmers, and commercial applicators 
were included. In North Carolina, only private applicators were 
enrolled. Cancer incidence and mortality are obtained by annual 
linkage to state cancer and mortality registries and to the National 
Death Index. Exposure information is collected by questionnaire. 
In the Phase I enrollment period (1993-97), applicators provided 
information on the use of 50 specific pesticides through 
completion of two self-administered questionnaires that included 

information on demographics, health history, and lifetime farming 
and pesticide use practices.6-8 The study was approved by the 

Institutional Review Boards of the National Institutes of Health 
(Bethesda, Maryland) and its contractors. From the enrollment 
data, two exposure metrics were developed; the first was lifetime 

days of pesticide use, calculated as the product of years of use of 
each specific pesticide and average number of days used per year. 
The second metric, intensity-weighted lifetime days of use, incor- 
porated information about factors that might impact exposure, 
such as the use of personal protective equipment, whether the 
applicator mixed pesticides, performed equipment repair, and 
methods of application.9 Five years later in Phase 2 (1999-2005), 
we administered a computer-assisted telephone interview question- 
naire that described pesticide use since enrollment. Specifically, 
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participants were asked about the last year that they applied 
pesticides, which was denoted as the Phase 2 reference year, and 
the type and frequency of use of specific pesticides. A total of 
36,342 (63%) of the original participants completed the ques- 

tionnaire; 8% had died between enrollment and the administra- 
tion of Phase 2, 15% refused, and 14% could not be reached.I° 
For epidemiological analyses, pesticide use information collected 
in Phase 2 was cumulatively added to information collected in 
Phase I for both aforementioned exposure metrics, using details 
of specific pesticide use. 

When using pesticide exposure in an analysis, there are several 
ways to handle missing Phase 2 information, including omission of 
those subjects, simple imputation (e.g., mean value substitution), 
or ignoring non-response in Phase 2 and implicitly assume zero 
pesticide exposure after Phase I, which would be erroneous for 

most participants who did not complete the Phase 2 question- 
naire. To correct for this potential bias, a data-driven multiple 
imputation for the 20,968 applicators (37%) who did not complete 

the Phase 2 questionnaire was employed. This paper describes the 
complex, multi-step process used to impute missing information 
on pesticide use from Phase 2 and an evaluation of the imputation 
procedure based on a holdout subset of participants with complete 
data (i.e., individuals who completed both Phase I and Phase 2). 
We also discuss the assumptions and advantages of multiple 
imputations. 

MATERIALS AND METHODS 

Imputation Strategy 

An overarching principal of multiple imputation is to model the response of 

interest, in this case the use of pesticides in the interim period between the 

administration of the Phases 1 and 2 questionnaires. We used covariates 

from participants with complete data from both phases, and then applied 

that model to participants missing Phase 2 to obtain estimates of the 

missing data. Our specific multiple imputation procedure imputes four 

primary AHS exposure metric variables of interest: (1) use (yes/no) of any 

pesticide in the interim period between Phases 1 and 2; (2) use (yes/no) of 

50 specific pesticides in the interim period (see Table 1); (3) number of days 

of use for a specific pesticide during Phase 2; and (4) last year of application 

of any pesticides within the 5-year period between Phases 1 and 2 (Phase 2 

reference year). Phase 2 respondents report use of many pesticides that 

were not specifically on the Phase 1 questionnaires; however, we limit this 

imputation to the subset of 50 pesticides that were chosen as the focus in 

Phase 1. The value of days of use per year on the Phase 2 questionnaire is a 

discrete count variable that was collapsed into categories and therefore 

skewed, and reference year is an ordinal variable. We use logistic regression 

and stratified sampling to impute the 102 variables (any use of pesticides: 

reference year of use, and for 50 specific pesticides: any use, and days per 

year) from Phase 2 that are needed to construct the pesticide-exposure 

metrics in the AHS. 

We withheld a randomly selected subset (20%, n - 7269) of participants 

from both Phase 1 and Phase 2 data to assess the proposed imputation 

method. We compared true and imputed percent usage and days/year of 

pesticide use within this subset using graphical displays and calculated the 

Brier score and Brier skill score11-13 -- measures of prediction accuracy. 

After assessment, the complete data were used to generate the final 

imputed datasets; nothing was withheld. All analyses were based on AHS 

data releases P1REL201005.00 and P2REL201007.00 and performed using 

SAS Version 9.1. 

Use of any Pesticide 

The first step in the imputation process was to impute the use of any 

pesticides since Phase I using subjects who completed both Phase I and 2 

questionnaires. Both the enrollment and the take-home portions of the Phase 

I questionnaire were used in the modeling process. The use of any pesticides 

was a binary variable, and we therefore used logistic regression to model its 

probability based on Phase I responses. We considered all variables from 

Table I. Phase 2 (1999-2005) pesticide usage in the AHS: observed 

and imputed. 

Prevalence estimates (%) 

Observed and 

Observed Imputed~ imputeda 

(N 36,342) (N 20,968) (N 57,310) 

Personally mix/load/apply 85.21 82.82 84.33 

any pesticides 

METHYL BROMIDE 0.51 0.49 0.51 

ALUMINUM PHOSPHIDE 0.79 0.84 0.81 

CARBON TETRACHLORIDE/ 0.00 0.00 0.00 

DISULFIDE 

ETHYLENE-DIBROMIDE 0.03 0.02 0.03 

BENOMYL 0.40 0.30 0.36 

CHLOROTHALONIL 2.53 2.75 2.61 

CAPTAN 2.37 1.65 2.11 

MANEB/MANCOZEB 0.18 0.14 0.16 

METALAXYL 2.52 2.60 2.55 

ZlRAM 0.10 0.08 0.10 

ATRAZlN E 31.16 25.86 29.22 

DICAMBA 19.35 15.31 17.87 

CYANAZlNE 1.64 1.44 1.57 

CHLORIMURON-ETHYL 3.24 3.19 3.22 

METOLACHLOR 14.74 13.03 14.11 

EPTC 0.35 0.30 0.33 

ALACHLOR 2.81 2.49 2.69 

METRIBUZlN 1.96 1.62 1.84 

PARAQUAT 2.08 2.19 2.12 

PETROLEUM OIL/PETROL. 0.58 0.41 0.52 

DISTILLATES 

PENDIMETHALIN 11.71 10.77 11.37 

IMAZETHAPYR 8.16 6.68 7.62 

GLYPHOSATE 51.82 43.98 48.95 

SlLVEX 0.00 0.00 0.00 

BUTYLATE 0.09 0.08 0.09 

TRIFLURALIN 11.10 9.13 10.38 

2,4-D 37.32 29.54 34.47 

2,4,5-T 0.14 0.11 0.13 

PERMETHRIN (for crops) 3.17 2.73 3.01 

PERMETHRIN (for animals) 3.12 2.29 2.82 

TERBUFOS 3.79 3.47 3.67 

FONOFOS 0.17 0.17 0.17 

TRICHLORFON 0.20 0.19 0.20 

LINDANE 1.31 0.92 1.17 

CARBOFURAN 1.35 1.21 1.30 

CHLORPYRIFOS 8.93 7.97 8.58 

MALATHION 12.78 10.00 11.76 

PARATHION 0.00 0.00 0.00 

CARBARYL 9.06 6.63 8.17 

DIAZlNON 2.91 2.42 2.73 

ALDICARB 1.67 2.31 1.91 

PHORATE 0.72 0.82 0.75 

ALDRIN 0.00 0.00 0.00 

CHLORDANE 0.05 0.00 0.03 

DIELDRIN 0.00 0.00 0.00 

DDT 0.00 0.00 0.00 

HEPTACHLOR 0.01 0.00 0.00 

TOXAPHENE 0.01 0.00 0.01 

COUMAPHOS 0.44 0.28 0.38 

DICHLORVOS 0.61 0.47 0.56 

almputed prevalence is average of five imputations. 

Phase 1 that had the potential to be associated with either missingness or 

pesticide use (see Table 2 for candidate covariates). We first conducted a 

univariate analysis of Phase 1 variables, except the pesticide-specific variables. 

The variables most strongly predictive of use of any pesticide on the Phase 2 

questionnaire were sex, marital status, farm ownership, farm size, days/year 

mixing pesticides, percent time personally mixing pesticides, percent time 

personally applying pesticides, and application of any pesticide in the prior 

year. Covariates associated with non-response to Phase 2 were continuous 
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Table 2. Phase 1 candidate covariates to predict use of any pesticide 

in Phase 2 (1999-2005) of AHS. 

Demographics 
Age (AGE AT ENROLLMENT)a 

Sex (GENDER)a 
State (SITE)a 

County (COUNTY) 
Professional/private license type (APP_TYPE)a 

Marital status / family size (AMARITAL)a 

Education (ASCHOOL, collapsed)a 

Farm characteristics 

Owner (AOWNFARM)a 

Farm size (AACRES)~ 

Pesticide use 
Years mixing pesticides (AYRSMIX)a 

Days/year mixing pesticides (AMIXDPY)a 

Percent Mix (APCTMIX)~ 
Percent Apply (APCTAPPL)a 

Application Methods (AAPMTH1 - AAPMTH21) 
Do not personally apply (AAPMTH 1)b 

Hand spray gun application (AAPMTH 4)b 

Backpack spray application (AAPMTH 5)b 

In furrow or banded application (AAPMTH 8)b 

Application Uses (APSTAP1 - APSTAP17) 

Rodent control (APSTAP2)b 
Highway right-of-way weed control (APSTAP6)b 

Herbicide (weed killers) applications to farm crops (APSTAP9)b 

Insecticide applications to farm animals/animal shelters 

(APSTAP12)b 
Fungicides (chemicals for controlling disease on crops) 

(APSTAP16)b 
Fumigants (gases or liquids that turn into gas when released) 

(APSTAP17)b 
Application in past 12 mos (APSTAP18)a 

Personal Protective Equipment (APROTEQ1- APROTEQ8) 
Chemical resistant gloves (APROTEQT)b 

Crops and Amimals (ACRPAN1 - ACRPAN8) 
No Crops or animals (ACRPAN2)b 

Medical conditions 

Diagnosis of various conditions and diseases (A_MEDCOND5 - 

A_M EDCO N D56) 
Ever diagnosed with other chronic lung disease 

(A_MEDCOND10)b 
Ever diagnosed with Diabetes (A_MEDCOND16E)b 

aCovariates forced into the model. 
bCovariates selected for the final model in step-wise selection process. 

age, education, state, applicator type, and years mixing chemicals.1° These 

variables and covariates were forced into the logistic regression model. Other 

potential covariates from Phase 1 (Table 2) were included or excluded based 

on the SAS step-wise regression procedure, with entrance and removal 

criteria of P < 0.001 and P > 0.01, respectively. Strict criteria were set because 

the dataset of individuals with complete data was so large. See Table 2 for 

final covariates in the model. 

We used the aforementioned logistic model with covariates based on 

Phase 1 data to compute a predicted probability of the use of any 

pesticides for each individual who did not complete Phase 2 (~i, 

i-1 ..... 20,968). For the ith individual, we imputed use (yes/no) of any 

pesticides as follows. With ~ibetween 0 and 1, we generated five uniform 

random variables between 0 and 1, Zij, j- 1 ..... 5. If Zij _~ ~i, then we 

assigned Uij- 1, otherwise we assigned Uij- 0, where Uil ..... Uis were the 

imputed values for use of any pesticides in Phase 2. 

For each individual and each imputation with an imputed "no" (Uij- 0), 

the 50 pesticide-specific use variables (yes/no) and the 50 chemical- 

specific days/year variables in Phase 2 (Table 1) were set to zero. For each 

individual and each imputation with an imputed "yes" to use of any 

pesticide (Uij- 1), the 50 missing chemical specific use variables and days/ 

year were then imputed. 

Use of Specific Pesticides 

Using data from participants who completed both Phase I and 2 

questionnaires, we applied the same process to generate a model for the 

probability of use of a specific pesticide in the interim period between 

Phases I and 2. However, we forced pesticide-specific covariates from 

Phase I (use of the specific chemical in the past year, ever mixed or applied 

the chemical in the past, number of years using the chemical, and days per 

year using the chemical) into the logistic model in addition to the 13 

covariates for the model of use of any pesticide (see Table 2). The stepwise 

procedure in SAS identified other meaningful covariates for each pesticide, 

based on the entrance and removal criteria and likelihood ratio statistics. 

For each participant missing Phase 2 information for whom we imputed a 

"yes" to use of any pesticide, Uij-- I, we generated a predicted probability 

for the use of a specific pesticide and randomly imputed five binary 

responses based on a uniform random number generator. Five responses 

(yes/no) were imputed for each of the 50 specific pesticides, Vijk with 

k-- I ..... 50. For those with Phase I and 2 data, it was not uncommon for 

participants to indicate applying or mixing of pesticides in Phase 2, while 

providing no affirmative response for any of 50 specific pesticides 

considered. This could suggest use of other pesticides or the inability to 

recall a specific pesticide. For that reason, we did not require that at least I 

specific pesticide be imputed as "yes", nor did we reverse the order by first 

imputing the 50 pesticides and then infer overall usage. 

Days Per Year Use of Specific Pesticides 

For each individual with an imputed "yes" to use of a specific pesticide, 

Vijk -- I, we next developed a procedure to impute days/year of use. Because 

the Phase 2 question for days/year had an ordinal response and because 

data were skewed and sparse, we implemented a stratified sampling 

scheme using participants who completed both Phase I and 2 and who 

reported the number of days/year they used the pesticide of interest. For 

those missing Phase 2 data and imputed to have used a specific pesticide, 

we randomly selected days/year of use from the empirical frequency 

distribution derived from those with Phase I and 2 data who used the 

pesticide and who were in an appropriate stratum. The first step in this 

process was to identify an informative stratification. Table I indicates that 

the prevalence of the use of specific pesticides in Phase 2 ranged from 0% 

(pesticide use was discontinued) to > 50%. For infrequently used pesticides, 

which were the majority, we could use only a limited number of Phase I 

stratification variables. By contrast, for widely used pesticides (e.g., 2,4- 

dichlorophenoxyacetic acid (2,4-D)), we could potentially use many 

stratification variables. However, to maintain consistency of methods across 

variables, we selected only variables most strongly associated with Phase 2 

days/year use as stratification factors. After considering several possible 

stratification variables (age, state, applicator type, Phase I days use, and 

others; data not shown), we based the imputation of Phase 2 days/year of 

use of a specific pesticide on a stratification by Phase I days/year of use of a 

specific pesticide. Thus, for an applicator missing Phase 2 days/year of use of 

a specific pesticide, we identified the Phase I days/year of use category, 

then randomly sampled (with replacement) a value from the frequency 

distribution for Phase 2 days/year of use that corresponded to the same 

Phase I days/year of use category. 

Finally, for those missing Phase 2 data, we also needed to impute the 

most recent year of farming activity. This year (see questions I0 and 13 of 

the private and commercial Phase 2 Questionnaires,7 respectively at 

www.aghealth.org/questionnaires.html) was critical for calculating cumu- 

lative exposure to pesticides. Because reference year is an integer with a 

12-year range (1993-2004), we again employed stratified sampling with 

replacement. The primary stratification variable was the use of any 

pesticide in Phase 2. If the imputed value for use of any pesticide was "no", 

then we defined 10 strata (applicator type [commercial or private] by 

enrollment year [1993-1997]). If the imputed value for use of any pesticide 

was "yes", then we defined 50 strata (applicator type by enrollment year by 

age at AHS enrollment in quintiles). For each stratum, we computed the 

frequency distribution of the most recent year of farming activity from 

those with complete Phase I and 2 data. We constrained the imputed 

reference year to occur after the enrollment year and, when an individual 
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was known to have died, before the year of death. If the enrollment year 

was equal to or within 1 year of death, we set the reference year to the 

enrollment year. 

RESULTS 

Imputation Assessment 

We assessed the imputation method by holding out a randomly 
selected subset (20%, n-7269) of the observed complete data 
and imputing multiple values for Phase 2 as though the data were 
missing. The "true" use of any pesticides in this subset was 85.68% 
with standard error 0.41%. The average of the five imputations 
indicated a prevalence of 85.25% with imputation adjusted 
standard error of 0.59%. This indicates that the logistic regression 
model underpinning the multiple imputation procedure did 
indeed preserve essential features of the data. Recall, the 

modeling process we used first generated a probability of use 
(the use of any pesticide, or the use of a specific pesticide) for each 
individual, /5i. To assess the accuracy of the implemented 
prediction model, and how it compares with a "na’~’ve" reference 

prediction (e.g., change prediction based on observed preva- 
lence), we calculated the Brier11 and Brier skill scores,12 commonly 
utilized in atmospheric probability forecasting and risk prediction 
modeling. In the holdout set, let Xi be the observed use 
of any pesticides, Xi-O or I, i-I ..... n, for the ith individual 

in the holdout data. Let /5i be the predicted probability 
of use from the logistic model. The Brier score estimator is 

B = l/n× i (X~ /5i)2 and is equivalent to the mean squared 
i--1 

error of prediction; the smaller the value the better the prediction. 
To assess the utility of any prediction model, it can be compared 
to a naTve prediction using the skill score, SS-- 1 B/BRf, where BRf 

is the Brier score estimator using a reference, or nai’ve forecast, p! 
in place of the model/5~ prediction. In this evaluation, we use the 
observed Phase 2 prevalence of pesticide use in the complete 

data (N--36,342) less the holdout observations (n- 7269) as the 
reference prediction, p! = 1/n~× ~-~--1 Xi, where n~ =N n. For use 

of any chemicals, B--0.1092, BRf-- 0.1227, for a SS--0.1103, an 
11% improvement in accuracy using the predictive model over 
simple prediction based on observed Phase 2 usage. Parker and 
Davis~3 proposed a similar metric to the skill score, which was the 

sum of sensitivity and specificity, whereby the sum must be > 1 
for the observed accuracy to be larger than chance. Figure 1 is a 
plot of Brier skill score versus the sum of sensitivity and specificity 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 

.o."¯ ¯Any Pesticide 

¯ ZIRAM 

...,.o .., ¯ * METHYL¯ BENOMYLBROMIDE 

¯ ~ PHORATE 
¯ 

TRICHLORFON 

1.00 1.05 1.10 1.15 1.20 1.25 

Sensitivity+Specificity 

Figure 1. Scatterplot of Brier skill score versus sensitivity- specificity 
for commonly used pesticides (P>0.05%). 

(pooling all five imputations for calculations) for overall pesticide 
use and commonly used pesticides (percent usage >0.05%). The 
two metrics are highly correlated (r-0.925) and essentially 
measure the same thing, proportional improvement of prediction 
model over naTve/chance prediction. 

Use of Specific Pesticides 

Table 3 gives the observed ("true") and imputed prevalence for 
the 38 pesticides where observed prevalence >0.05%. The mean 
and standard error of a variable that includes multiply imputed 
values is well knownJ Therefore, for any chemical, let Xi be the 
observed use of the pesticide of interest, Xi = 0 or I, i= I ..... n for 

the ith individual in the holdout data. The estimated mean and 
variance of the percent usage (prevalence) in the holdout data is: 

p = (I/n)× ~-~Xi and s2 =p × (I p)In, respectively. It follows that 
i=I 

the usual standard error of the estimated prevalence p, is s. The 

prevalennce from one of the m multiply imputed datasets is isj = 

(l/n)× ~-~ z~ij where z~ij : 0 or 1, the imputed use of the pesticide 
i=1 

of interest for individual i. Then, the overall prevalence 

estimate and its variance from the m (in this case 5) imputed 
m 

datasets are/5 = (l/m)× ~-~ iSj and 72 : 1 m(isj /5)2, where #f = 
7=1 

(1/n)×isj× (1 iSj) and #~s the standard error of/5. 
As expected, the multiple imputation estimates of the standard 

error are slightly higher than the "true" standard error because 
the variability of the random imputations are included in the 
estimates, and pesticides with the highest prevalence (e.g., 
atrazine, 31.47%) have the largest standard errors while rarely 
used pesticides (e.g., methyl bromide, 0.41%) have little variability. 
Imputed prevalence is generally lower than observed both in 
Table 1 (across Phase 2 responders and non-responders) and 

Table 3 (the validation set). The Brier skill scores in Table 3 show a 
range of improvement from none to 25% over the naTve, or 
reference prediction model. Models for aldicarb and chlorothalonil 
appear to perform the best (SS of 0.256 and 0.214, respectively), 
while the majority of pesticides fall between SS=0.05 and 0.20, 
including 2,4-D and atrazine with an 18% improvement in 
accuracy over naTve predictions. Some of the least prevalent 
pesticides did not benefit much from the implemented modeling 
scheme, and some of their skill scores were slightly negative (e.g., 
EPTC, phorate, benomyl, fonofos, and trichlorphon). The variability 
corresponding to rare event predictions can be large relative to 
the naTve estimates, and can yield negative skill scores. Skill scores 
close to zero (negative or positive) indicate that the predictive 
model was of limited additional value for these pesticides. 

Figure 2 is a plot of the relative errors of the imputed 
prevalence estimate, /5 to their respective true estimate, p, i.e., 

~, = (/5 p)/p, for the 38 pesticides with >0.05% use. Relative 
errors, ~,, are centered about zero, and mostly fall within + 0.20. 
For only a few of the rare pesticides (< 1.0% usage) used in Phase 
2 does the imputed prevalence differ from the "true" prevalence 
by more than 20% (e.g., petroleum oil/petroleum distillates, 
methyl bromide, maneb/mancozeb, trichlorfon, metalaxyl, dichlor- 
vos, coumaphos, and phorate). 

Days Per Year Use of Specific Pesticides 

We imputed days per year for a specific pesticide by sampling 
with replacement from the observed Phase 2 data stratified by 
Phase I days use of that pesticide. Figure 3 shows the box plots of 
the observed data from the validation dataset alongside the 
imputed data for days/year for three pesticides. Alachlor, diazinon, 
and 2,4-D were chosen for illustration because they were widely 
used and represent common usage patterns in the AHS cohort. 
The distributions of the imputed values for the three pesticides 

were very similar to those of the "true" data. The means (solid 
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Table 3. Prevalence, standard error and Brier scores of pesticide use in holdout dataset (N 7269) of the AHS. 

Pesticide name 
Observed Imputed~ 

Reference Brier Brier score Brier skill score 

Prevalence (%) Standard error Prevalence (%) Standard error 

METHYL BROMIDE 0.43 0.08 0.56 0.12 0.004 0.004 0.001 

ALUMINUM PHOSPHIDE 0.59 0.09 0.71 0.13 0.006 0.005 0.149 

BENOMYL 0.37 0.07 0.29 0.08 0.004 0.004 0.007 

CHLOROTHALONIL 2.39 0.18 2.33 0.26 0.023 0.018 0.214 

CAPTAN 2.12 0.17 2.11 0.28 0.021 0.020 0.053 

MAN EB/MANCOZEB 0.15 0.05 0.18 0.06 0.002 0.002 0.020 

METALAXYL 2.66 0.19 2.09 0.23 0.026 0.023 0.124 

Z lRAM 0.12 0.04 0.11 0.05 0.001 0.001 0.090 

ATRAZlN E 31.85 0.55 27.64 0.69 0.217 0.I 77 0.185 

DICAMBA 19.16 0.46 17.39 0.48 0.155 0.128 0.177 

CYANAZlNE 1.75 0.15 1.50 0.21 0.017 0.017 0.029 

CHLORIMURON-ETHYL 2.93 0.20 2.93 0.36 0.028 0.027 0.050 

METOLACH LOR 14.87 0.42 13.23 0.55 0.127 0.113 0.109 

EPTC 0.30 0.06 0.30 0.09 0.003 0.003 0.003 

ALACHLOR 2.82 0.19 2.43 0.32 0.027 0.026 0.052 

METRIBUZlN 2.19 0.17 1.75 0.22 0.021 0.021 0.022 

PA RAQ UAT 1.91 0.16 1.88 0.22 0.019 0.017 0.086 

PETRO. OIL/PETRO. DISTILLATES 0.47 0.08 0.60 0.13 0.005 0.005 0.006 

PEN DIMETHALIN 11.24 0.37 10.36 0.48 0.100 0.093 0.068 

IMA7ETHAPYR 7.76 0.31 7.36 0.39 0.072 0.067 0.070 

GLYPHOSATE 52.73 0.59 45.42 0.83 0.249 0.225 0.097 

TRIFLURALIN 10.58 0.36 10.21 0.58 0.095 0.080 0.157 

2,4-D 36.92 0.57 33.30 0.86 0.233 0.190 0.184 
PERMETHRIN (for crops) 3.36 0.21 2.71 0.24 0.032 0.031 0.036 

PERMETHRIN (for animals) 3.05 0.20 2.83 0.33 0.030 0.028 0.061 

TERBUFOS 3.80 0.22 3.38 0.33 0.037 0.033 0.095 

FONOFOS 0.17 0.05 0.15 0.07 0.002 0.002 0.009 

TRICHLORFON 0.17 0.05 0.13 0.05 0.002 0.002 0.028 

LIN DAN E 1.39 0.14 1.07 0.18 0.014 0.013 0.046 

CARBOFURAN 1.36 0.14 1.14 0.24 0.013 0.013 0.014 

CHLORPYRIFOS 8.87 0.33 7.90 0.46 0.081 0.074 0.081 

MALATHION 12.88 0.39 11.50 0.49 0.112 0.103 0.083 

CARBARYL 9.34 0.34 7.69 0.65 0.085 0.079 0.072 

DIAZlNON 2.94 0.20 2.71 0.28 0.029 0.028 0.027 

ALDICARB 1.66 0.15 1.57 0.18 0.016 0.012 0.256 

PHORATE 0.59 0.09 0.69 0.I 7 0.006 0.006 0.024 

COUMAPHOS 0.56 0.09 0.33 0.10 0.006 0.005 0.056 

DICHLORVOS 0.65 0.09 0.48 0.12 0.006 0.006 0.010 

almputed prevalence is average of five imputations and standard error is calculated via equation in text. 
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squares) were more sensitive to outliers for the less frequently 
used pesticides since fewer than 200 individuals reported use of 
those pesticides in the 20% holdout set. Comparing the observed 
reference year with its imputed value, Figure 4 indicates that for 
90% of participants with reference year 1998 through 2004, the 
imputed years were centered around the expected year. When the 
"true" reference year is 1994-1997 the sampled imputation values 
were higher than expected and indicated bimodality. This was due 
to the ordinal nature of reference year and the scheduled pattern 

of interviews. The first interviews were conducted between 1993 
and 1997 (Phase I), while the follow-up Phase 2 interviews 

occurred between 1999 and 2005. When an individual partici- 
pated in Phase 2, the most likely responses for reference year were 
I) the year prior to the Phase 2 interview, 2) 5years prior (year of 
Phase I), or 3) the last year of farming prior to enrollment. This 
bimodal behavior seen in approximately 10% of the holdout 
dataset tended to occur in individuals who reported "no farming" 
or "no pesticide application" in Phase 2, and therefore a reference 

year for pesticide use in Phase 2 was irrelevant. 

Post-assessment of the holdout dataset, all of the observed data 
were used to generate the complete predictive model and 
populate the sampling data. The final multiple imputations were 
generated and prevalence estimates for the 50 pesticides in the 
imputed subset and overall are shown in Table I. 

DISCUSSION 

The lifetime exposure of an individual to a specific pesticide or set 

of pesticides is the primary quantity of interest in the AHS for 
studying the association between exposure and disease out- 
comes. A substantial number of AHS participants were non- 

responders to a Phase 2 questionnaire used to update lifetime 

pesticide use following enrollment. In analyses, imputation is 

generally preferable to omitting individuals who did not complete 
Phase 2 (in our case, 37% of enrolled individuals) due to possible 

selection bias in the subset with complete data and decreased 

precision of parameter estimates using only a subset of the 
data. This paper illustrates the use of a multi-step, conditional 

imputation procedure combining parametric modeling and 

sampling from an empirical distribution for several variable types. 

Using multiple imputation, the variables necessary to calculate 

exposure for those missing Phase 2 data are replaced by five 

imputed values. For validation purposes, we estimated prevalence 
of pesticide use and showed the form of the variance estimate for 

prevalence resulting from multiple imputation. Prevalence esti- 

mates for the Phase 2 non-responders were slightly lower than in 

the responders and this is likely due to the slightly different 

makeup of individuals in each. Logistic regression is known to 

perform sub-optimally when modeling rare events,14 which may 
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Figure 2. 
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explain the low imputed prevalence estimates in the validation 

set; the underestimation makes our imputation slightly conserva- 

tive, favoring specificity over sensitivity. 
Rubin’s method of scalar estimands in multiple imputation 

procedures15 is generalizable and can be used to calculate standard 
errors and confidence intervals for any estimator including risk 
ratios, absolute risk, and hazard ratios. We applied fractional hot 
deck imputation16 to impute days/year use of a pesticide, for which 
other variance estimators have been proposed;~6-~9 however, their 

utility has not been explored here. 
Multiple imputation, in contrast to single imputation, accounts 

for the uncertainty of predicting missing data with limited loss 
of efficiency (nearly 94% efficient when imputed five times with 
35% missing data, as opposed to 74% efficiency with a single 
imputation~). The observed data, together with the five imputed 
values for missing variables, generate five complete datasets to be 
analyzed by standard statistical techniques resulting in five slightly 
different results. These results and their variance/covariance 
matrices are combined to represent the variability induced by 
the imputing process. For simplicity, modeling and sampling were 
performed using the single set of observed complete data, as 
opposed to first bootstrapping the complete data to perform a 
proper imputation, which accounts for variability of regression 
parameter estimates used in the imputation.~ An assessment 
of proper versus improper imputation on a dataset similar to 
the AHS shows mixed results.2° Multiple imputation was chosen 

for pesticide use in the AHS over other approaches such as 
probability weighting or the EM algorithm21 because of its 

familiarity and ease of use. Providing a single set of multiply 
imputed data will facilitate consistent results in future analyses. 

A key assumption of any imputation is that missingness is 
independent of the unobserved outcome of interest or 
unobservable confounders (i.e., missing at random). The reduc- 
tion of bias and increase in precision from multiple imputations 
is dependent on the covariates associated with both non- 
response and the endpoint variable,22 and factors associated 

with non-participation, which were included in our imputation 
model. For our imputation analysis, the "outcome" of interest is 
the missing pesticide use itself; Montgomery et al.~° show 

there is little evidence for selection bias in Phase 2 of the AHS, 
however missing at random is an untestable assumption without 
additional data; thus it is possible that non-responders differ 
from responders in variables we have not measured. It is worth 
emphasizing that the set of individuals with both Phase I and 2 
responses had a full range of exposure, including those who 
were no longer farming, and therefore our data-driven imputa- 
tion approach did not necessitate that non-responders be 
imputed as active pesticide users. To implement multiple 
imputation, missingness may be conditional on observable 
covariates from Phase I and our models incorporated covariates 
associated with Phase 2 pesticide use in constructing the values 
for missing data. 
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Figure 3. 
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415 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

2001 

2002 

2003 128 

2004 172 

94 95 96 97 98 99 00 01 02 03 04 

Imputed RefemnceYear(oneimputation, ll) 

Holdout Observations 

N Cumulative % 

37 0.5% 

67 1.5% 

108 3.0% 

141 5.0% 

932 18% 

2541 53% 

1908 79% 

773 90% 

462 95% 

98% 

100% 

Figure 4. Histogram display of the distribution of imputed Phase 2 
reference year by true, observed reference year in the holdout 
dataset of the AHS. 

As was done for information collected from participants who 

completed the Phase 2 questionnaire, for epidemiologic analyses, 
the imputed pesticide use information has been cumulatively 
added to information collected in Phase I. This multiple 
imputation will allow for bias reduction and improved efficiency 
in future analyses of the AHS. 
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