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ABSTRACT
BACKGROUND: Electroconvulsive therapy (ECT) is associated with volumetric enlargements of corticolimbic brain
regions. However, the pattern of whole-brain structural alterations following ECT remains unresolved. Here, we
examined the longitudinal effects of ECT on global and local variations in gray matter, white matter, and ventricle
volumes in patients with major depressive disorder as well as predictors of ECT-related clinical response.
METHODS: Longitudinal magnetic resonance imaging and clinical data from the Global ECT-MRI Research
Collaboration (GEMRIC) were used to investigate changes in white matter, gray matter, and ventricle volumes
before and after ECT in 328 patients experiencing a major depressive episode. In addition, 95 nondepressed
control subjects were scanned twice. We performed a mega-analysis of single subject data from 14 independent
GEMRIC sites.
RESULTS: Volumetric increases occurred in 79 of 84 gray matter regions of interest. In total, the cortical volume
increased by mean 6 SD of 1.04 6 1.03% (Cohen’s d = 1.01, p , .001) and the subcortical gray matter volume
increased by 1.47 6 1.05% (d = 1.40, p , .001) in patients. The subcortical gray matter increase was negatively
associated with total ventricle volume (Spearman’s rank correlation r = 2.44, p , .001), while total white matter
volume remained unchanged (d = 20.05, p = .41). The changes were modulated by number of ECTs and mode of
electrode placements. However, the gray matter volumetric enlargements were not associated with clinical outcome.
CONCLUSIONS: The findings suggest that ECT induces gray matter volumetric increases that are broadly distrib-
uted. However, gross volumetric increases of specific anatomically defined regions may not serve as feasible bio-
markers of clinical response.
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Depressive disorders are now the leading cause of years lived
with disability worldwide (1), with an estimated 300 million
people being affected (2). Electroconvulsive therapy (ECT)
remains the most efficient therapy for severe and treatment-
resistant depression, with rates and time to response sur-
passing other established treatments (3,4). However, despite
its efficacy, the therapy remains controversial. This may be
related to the poor understanding of its underlying neurobio-
logical mechanisms and to reports of unwanted side effects.
Identifying brain structural and functional correlates of clinical
response is thus a major research goal, as it may help clarify
the mechanisms of antidepressant action and also help identify
patients that are most likely to benefit from ECT treatment.

Magnetic resonance imaging studies in patients receiving
ECT have consistently reported increased volume of the
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hippocampus (5–9) and surrounding structures (6,10–12),
complementing reports of reduced hippocampal volume in
depression (13). Moreover, animal models of ECT have shown
a dose-related increase in hippocampal neurogenesis (14),
which is a stem cell–containing niche in the adult human brain
[(15); see (16)]. Together, these findings are taken in support of
the neurogenic theory of depression, which postulates that
depression hinders neurogenesis in the hippocampus (17,18)
and that ECT may reverse this effect (12,14). However, apart
from inducing neurogenesis, electroconvulsive seizures (ECS,
the animal model of ECT) also stimulate gliogenesis, angio-
genesis, and synaptogenesis (19–21), and these effects are not
restricted to the medial temporal lobe. Furthermore, ECT-
related changes in gray matter volume or density have been
identified for numerous brain regions, including the basal
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Table 1. Clinical and Demographic Characteristics of the
GEMRIC Sample

Subject Characteristics Mean SD na

Patients

Age, years 54.6 16.3 328

Baseline cortical GM, cm3 519.7 63.2 300b

Changes cortical GM, % 1.0 1.0 299

Baseline subcortical GM, cm3 52.5 6.0 300

Changes subcortical GM, % 1.5 1.1 295

Baseline WM, cm3 464.6 62.1 300

Changes WM, % 20.02 0.5 299

Baseline ventricle volumes, cm3 30.7 18.5 300

Changes ventricle volumes, % 24.9 6.7 299

Baseline intracranial volume, cm3 1489.0 189.0 300

Baseline depression score 34.0 8.3 324

Posttreatment depression score 14.4 10.9 322

Duration of episode, months 17.6 29.3 205

Number of ECTs, total 11.7 5.0 320c

Bilateral only 12.6 6.5 89

Right unilateral only 10.6 3.6 186

Number of ECTs, responders 11.2 5.0 199

Number of ECTs, nonresponders 12.9 4.7 113

Control Subjects

Age, years 46.9 14.6 95

Baseline cortical GM, cm3 556.4 56.9 95

Changes cortical GM, % 20.1 0.5 95

Baseline subcortical GM, cm3 55.2 5.4 95

Changes subcortical GM, % 20.06 0.4 95

Baseline WM, mm3 471.5 56.8 95

Changes WM, % 0.01 0.3 95

Baseline ventricle volumes, cm3 21.7 13.3 95

Changes ventricle volumes, % 0.05 3.9 95

Baseline intracranial volume, cm3 1520.1 179.2 95

ECT, electroconvulsive therapy; GEMRIC, Global ECT-MRI
Research Collaboration; GM, gray matter; WM, white matter.

aDue to missing data for some variables, the number of subjects
varies.

bTwenty-eight subjects were missing magnetic resonance imaging
before or after treatment and were therefore excluded from all analyses.

cInformation regarding number of ECTs was missing for 8 subjects.
Of note, some subjects received $1 mode of electrode placement and
1 subject also received left anterior right temporal stimulation.
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ganglia (22), temporal pole (23), insula (23), and anterior
cingulate cortex (10,24,25).

Jointly these findings suggest more widespread effects of
ECT than were initially proposed; however, the extent and
distribution of changes vary considerably across studies.
Moreover, although some studies report associations between
volumetric changes and clinical response (10,12,24), these
findings have generally not been replicated in meta- or mega-
analyses (5,6,8). The inconsistencies may arise owing to vari-
ability in data acquisition and processing, in addition to clinical,
treatment, and demographic heterogeneity. With regard to
data processing, various techniques for assessing structural
changes exist. Some studies use voxel-based morphometry to
generate maps of gray matter density, whereas others use
surface-based streams to generate maps of cortical thickness
and surface area, or volume-based streams to generate maps
of subcortical volumes. These techniques likely differ in their
anatomical structure identification (26,27) and in their modeling
of longitudinal changes. Moreover, the selective focus on a few
regions of interest (ROIs), without taking the full brain into
account, gives a fragmented understanding of the neurobio-
logical effects of ECT.

To overcome some of these shortcomings, we established
the Global ECT-MRI Research Collaboration (GEMRIC) (28),
which aims to identify consistent brain alterations associated
with ECT treatment in depression. The goal of the present
study was to delineate whole-brain volumetric changes
following ECT using the GEMRIC database and to extend our
previous investigation of hippocampal volumetric changes
following ECT (5). By performing a mega-analysis of single
subject data, we tested whether whole-brain structural
changes are associated with ECT treatment number, mode of
electrode placement, and clinical outcome.

METHODS AND MATERIALS

Study Sample

Clinical and demographic characteristics of the total sample
are detailed in Table 1. For information regarding each site’s
demographic and clinical characteristics, see Supplemental
Figure S1 and Supplemental Table S6. In the present study,
data from 14 sites were included, totaling 328 patients (60.7%
female, mean age 6 SD: 54.6 6 16.3 years) and 95 control
subjects (60.0% female, mean age 6 SD: 46.9 6 14.6 years).
Patients were scanned before (within 1 week before the first
ECT session) and after treatment completion (typically within 1
to 2 weeks after the final ECT session of the index series),
except for site number 11, which scanned patients before and
after the completion of 9 ECT sessions. Control subjects were
similarly scanned at 2 time points. Depressive symptoms were
rated by the Montgomery–Åsberg Depression Rating Scale
(MADRS). For sites that had used the Hamilton Depression
Rating Scale, a validated equation was used to convert the 17-
item Hamilton Depression Rating Scale to MADRS (29). Owing
to some missing data points, the final patient sample size used
for the main statistical tests varied between 282 and 322 pa-
tients. ECT practice differed across sites in terms of electrode
placement (right unilateral [RUL], bifrontal, and bitemporal),
ECT charge, and pulse width [see (28)]. Moreover, most sites
continued psychotropic medications during the ECT series.
452 Biological Psychiatry March 1, 2020; 87:451–461 www.sobp.org/j
Medication information for each site is provided in
Supplemental Table S1. All contributing sites received ethics
approval from their local ethics committee or institutional re-
view board. In addition, the centralized mega-analysis was
approved by the Regional Ethics Committee South-East in
Norway (No. 2013/1032).
Image Acquisition and Postprocessing

The image processing pipeline has been detailed elsewhere
(5,28). In brief, 3-dimensional T1-weighted structural images
with a minimum resolution of 1.3 mm in any direction were
acquired at both time points using 1.5T (1 site) or 3T (13 sites)
scanners (see Supplemental Table S6). Image processing and
ournal
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analysis were performed by a pipeline optimized to increase
the statistical power of detecting longitudinal cortical and
subcortical anatomical change. Raw DICOM (Digital Imaging
and Communication in Medicine) images as well as clinical and
demographic information for individual patients and control
subjects were transferred to a centralized data portal (30) for
common analyses. Images were corrected for distortions
caused by scanner-specific nonlinear gradient warp (31) and
registered to a common atlas space and resampled to an
isotropic 1-mm3 spatial resolution. Cortical and subcortical
segmentations were performed by FreeSurfer, version 5.3
(https://surfer.nmr.mgh.harvard.edu/) and included parcellation
A

B

C
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of 66 (33 left and 33 right) cortical gray matter ROIs [based on
the Desikan-Killiany atlas (32)] in addition to the 2 (left and
right) cerebellar cortical gray matter and 16 (8 left and 8 right)
default FreeSurfer subcortical gray matter regions. Next, Quarc
(33,34) was used for unbiased estimation of volume change
from pre- to posttreatment in all ROIs. In addition to the volume
change of each separate region, the total volume changes of 4
main tissue compartments (ROItc)—cortical gray matter,
subcortical gray matter, white matter, and total ventricle
volume—were estimated. We used the total ventricle volume
from FreeSurfer, which consists of right and left lateral, third
and fourth ventricles, to estimate the volumetric changes of the
Figure 1. Whole-brain volumetric changes
following electroconvulsive therapy. (A) Graphical
illustration of volumetric changes mapped to the
brain. The colors refer to Cohen’s d effect sizes as
coded in the bar to the right of the images. Effect
sizes for white matter and ventricles are not shown.
(B) Cohen’s d effect sizes for the volumetric
changes of all cortical and subcortical gray matter
regions of interest in patients (84 in total). All elec-
trode placements were treated equally. (C) Group
(i.e., patients vs. controls) differences in volumetric
changes of the gray matter regions of interest. The
model controlled for age, sex, site, and the respec-
tive baseline volumes. DC, diencephalon.
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ventricles. For the remaining 3 tissue compartments, volu-
metric changes were calculated using weighted means:

ROItc ¼
Xn

i¼1
ðvolbaseline 3 volchangeÞi

,Xn

i¼1
volbaselinei

where n was the number of ROIs included in the given ROItc,
and volbaseline and volchange were the baseline volume and
volume change for the ith ROI. The ROItc for 1) cortical gray
matter consisted of left and right cortical and cerebellar gray
matter volume, while the ROItc for 2) subcortical gray matter
included the volumes of left and right thalamus proper,
caudate, putamen, pallidum, hippocampus, amygdala, nucleus
accumbens, and ventral diencephalon. Finally, the ROItc for 3)
total white matter included the volumes of left and right
subcortical and left and right cerebellar white matter. The
quality of the whole-brain segmentation was ensured by using
procedures adapted from the ENIGMA (Enhancing Neuro Im-
aging Genetics Through Meta Analysis) Consortium (http://
enigma.usc.edu/) (35). Further details on the quality control
procedure can be found in the Supplement.

Statistical Analyses

Statistical analysis was performed with the R software package,
version 3.4.0 (R Foundation for Statistical Computing, Vienna,
Austria) (36). Slopes of linear models are reported with mean 6
SE, while all other results are reported as mean 6 SD. Our first
goal was to investigate the distribution of structural brain
changes following ECT. Thus, we examined group differences in
volumetric change scores for the 4 major tissue compartments
(cortical or subcortical gray matter, white matter, or the ventri-
cles) using general linear models. A binary indicator of diagnosis
(patients vs. control subjects) was the predictor of interest. In
addition, all models were controlled for age, sex, site, and the
respective baseline volumes. To further delineate the anatom-
ical distribution of the gray matter changes, we investigated
each of the 84 gray matter ROIs (33 left and 33 right cortical, 8
left and 8 right subcortical, left and right cerebellum gray matter)
separately using the same statistical framework detailed above.
Because some sites did not provide data for healthy control
subjects, we also investigated volumetric changes of all 84 ROIs
and the 4 ROItcs in patients and healthy control subjects
separately, and the results of these analyses are provided in the
Supplement. Effect size estimates are reported as Cohen’s
d metric, calculated as dv/SD where dv represents the mean
change estimate and SD the standard deviation for each
anatomical ROI or tissue compartment. Throughout this article,
we report false discovery rate (FDR)-corrected p values (pFDR ,

.05).
To address whether the number of ECT sessions influenced

the volumetric changes, we performed separate general linear
=

Figure 2. Differential effect of electroconvulsive therapy (ECT) on 4 major tis
changes of subcortical gray matter and number of ECTs. Subcortical gray matte
pallidum, hippocampus, amygdala, nucleus accumbens, and ventral diencephalo
gray matter and number of ECTs. Cortical gray matter consisted of left and right c
volumetric changes of total white matter and number of ECTs. Total white matter
white matter. (D) Scatter plot of the association between the changes of total ven
and left lateral, third and fourth ventricles. (E) Scatter plot of the association bet
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models using the volumetric change of the 4 main tissue
compartments as the outcome values and the number of ECTs
as the predictor of interest. Number of ECT sessions was
weighted similarly regardless of electrode placement across
the sites. The analyses controlled for age, sex, site, the
respective baseline volumes, and baseline depression scores.
To control for nonlinear effects of ECT, we also included the
number of ECT sessions squared as a covariate.

To examine the effect of electrode placement, we split the
patients into subjects receiving RUL (n = 186) versus bilateral
([BL]; n = 89, of which 20 were bifrontal and 69 were bitem-
poral) stimulation only and tested for group differences in the
left or right hemispheric cortical and subcortical gray matter
changes using two-sample t tests. Patients switching mode of
electrode placement during the course of treatment were
excluded. We also investigated whether number of BL versus
RUL ECTs affected the left hemispheric changes, by fitting
separate linear models for the left cortical and subcortical gray
matter ROItc and subsequently testing the difference in slopes
between RUL and BL using the function Linear Hypothesis in R
(car-package, version 2.1–6). The analyses controlled for age,
sex, site, baseline depression score, and the respective
baseline volumes. Finally, we examined the association be-
tween treatment response and the gray matter changes. In
separate general linear models, we tested the association
between clinical response (changes in MADRS pre2post ECT)
and volumetric change of each gray matter ROI (i.e., the 84
anatomical ROIs and the 2 gray matter ROItcs) while controlling
for age, sex, site, baseline depression score, number of ECTs,
number of ECTs squared, and the respective baseline
volumes.

RESULTS

The mean depression rating (MADRS score) of patients
decreased from 34.0 6 8.3 at baseline to 14.4 6 10.9 after
treatment (t319 = 27.24, p , .001). Moreover, 63.1% of the
patients were classified as responders (.50% symptom
reduction) and 46.6% of the patients were categorized as re-
mitters (MADRS of,10 following the index series). Clinical and
demographic characteristics of the responders and the re-
mitters are detailed in the Supplemental Results.

In our primary analyses, we assessed group differences in
volumetric changes across 4 major tissue compartments while
controlling for age, sex, site, and the respective baseline vol-
umes. The analyses revealed significant volumetric enlarge-
ments of the cortical (t376 = 7.40, pFDR , .001, d for patients =
1.01) and the subcortical (t372 = 11.70, pFDR , .001, d = 1.40)
gray matter compartments in patients following ECT. Corre-
spondingly, ventricle size decreased in patients over the
course of the ECT index series (t376 = 25.09, pFDR , .001,
d = 20.74), while no significant changes emerged for the white
sue compartments. (A) Scatter plot of the association between volumetric
r included the volumes of left and right thalamus proper, caudate, putamen,
n. (B) Scatter plot of the association between volumetric changes of cortical
ortical and cerebellar gray matter. (C) Scatter plot of the association between
included the volumes of left and right subcortical and left and right cerebellar
tricle volume and number of ECTs. Total ventricle volume consisted of right
ween ventricular and subcortical volumetric changes.
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Figure 3. Whole-brain volumetric changes
following electroconvulsive therapy based on elec-
trode placement. (A) Cohen’s d effect sizes for the
volumetric changes of all cortical and subcortical
gray matter regions of interest in patients receiving
right unilateral stimulation. (B) Cohen’s d effect sizes
for the volumetric changes of all cortical and
subcortical gray matter regions of interest in patients
receiving bilateral stimulation. Bilateral stimulation
included bifrontal and bitemporal electrode place-
ment. DC, diencephalon.
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matter compartment (t376 = 20.05, pFDR = .96, d = 20.05). The
volumetric changes were broadly distributed across cortical
and subcortical gray matter ROIs, with effect sizes ranging
between 0.009 and 1.73 (Figure 1A, B), and the volume change
was statistically significant for 79 of the 84 gray matter ROIs
(Figure 1C, Supplemental Table S2). A within-group compari-
son of volumetric changes in patients revealed significant
volumetric alterations in all ROIs except for the white matter
ROItc and cerebellar gray matter (Supplemental Table S3). No
changes were observed in control subjects (Supplemental
Table S4).

We next investigated how number of ECTs may relate to the
volumetric changes of the 4 tissue compartments while con-
trolling for age, sex, site, the respective baseline volumes,
baseline depression scores, and number of ECTs squared.
Volumetric increase as a function of number of ECTs was
found for both subcortical (slope 0.21 6 0.04, t263 = 5.15, pFDR
, .001) (Figure 2A) and cortical (slope 0.12 6 0.04, t267 = 3.05,
pFDR = .006) (Figure 2B) gray matter, while there was no as-
sociation for white matter (slope 0.006 6 0.02, t267 = 0.28,
pFDR = .78) (Figure 2C). Moreover, the number of ECTs-
squared term was significant for subcortical volume changes
456 Biological Psychiatry March 1, 2020; 87:451–461 www.sobp.org/j
(t263 = 23.49, pFDR = .002), suggesting significant volumetric
changes also in subjects receiving shorter ECT index series.
Corresponding to the increase in gray matter volume, and in
accord with the Monro-Kellie doctrine (37), ventricle volume
was negatively associated with number of ECT sessions
(slope 20.69 6 0.29, t267 = 22.34, pFDR = .03) (Figure 2D).
Moreover, there was a negative association between changes
in subcortical gray matter and ventricle volumes; thus, patients
experiencing the greatest subcortical volumetric increase also
had the largest ventricle volume reductions (Spearman’s rank
correlation r = 2.44, p , .001) (Figure 2E). The magnitude of
change for subcortical, cortical, white matter, and ventricle
volume across sites are shown in Supplemental Figure S2.
Finally, adding psychotropic medication as an additional co-
variate in the models did not influence the results (see
Supplemental Results).

While all subjects received right hemisphere stimulation
(RUL, bifrontal, bitemporal), only a subsample also received
stimulation of the left hemisphere (bitemporal or bifrontal).
Accordingly, the distribution of effect sizes of volume change
per gray matter ROI differed for patients receiving RUL-only
versus BL-only stimulation (Figure 3A, B). A comparison of
ournal
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Outcome & volume changeA B Figure 4. The association between brain volu-
metric effects and clinical response. (A) Scatter plot
of the association between subcortical gray matter
volumetric changes and changes (pre2post
electroconvulsive therapy index series) in Mont-
gomery–Åsberg Depression Rating Scale (MADRS).
Subcortical gray matter included the volumes of left
and right thalamus proper, caudate, putamen, pal-
lidum, hippocampus, amygdala, nucleus accum-
bens, and ventral diencephalon. (B) Scatter plot of
the association between cortical gray matter volu-
metric changes and changes in MADRS. Cortical
gray matter consisted of left and right cortical and
cerebellar gray matter.
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electrode placement for the left subcortical ROItc revealed
greater volumetric enlargements for BL with respect to RUL
stimulation (t152 = 3.70, pFDR = .002, two-sample t test). An
equivalent analysis for left cortical ROItc was not significant
(t125 = 2.06, pFDR = .12). Changes in right subcortical (t152 =
0.14, pFDR = .89) or cortical (t138 = 0.15, pFDR = .89) ROItcs did
not differ for BL versus RUL electrode placement. We also
investigated whether mode of electrode placement differently
affected the left hemisphere’s gray matter expansion per ECT
session, by constructing separate linear models for the left
cortical and subcortical tissue compartments, and subse-
quently comparing the slopes for the number of RUL versus BL
ECT sessions. The slopes of left cortical ROItc (0.06 6 0.02 vs.
0.06 6 0.02) and subcortical ROItc (0.05 6 0.02 vs. 0.07 6
0.02) volume change per ECT session did not differ for RUL
versus BL electrode placements, respectively. This was further
confirmed by comparisons of the slopes in a linear hypothesis
test (subcortical p = .49, cortical p = .99). Also, change in
MADRS score per ECT session did not differ between RUL and
BL stimulation (Supplemental Results, Supplemental
Figure S3).

Finally, we analyzed the relationship between the gray
matter volumetric changes and treatment outcome, measured
using the MADRS. We tested all anatomical gray matter ROIs
in addition to the weighted means of cortical and subcortical
gray matter change. There were no significant associations
between changes in subcortical (slope = 21.06 6 0.66,
t262 = 21.60, pFDR = .22) (Figure 4A) or cortical (slope = 20.56
6 0.64, t266 = 20.88, pFDR = .38) (Figure 4B) gray matter vol-
umes and clinical improvement following the index series.
Furthermore, although nominal significant associations
emerged between the volumetric changes of right rostral
middle frontal (t266 = 22.80, p = .006), right putamen
(t266 = 22.00, p , .05), left accumbens (t266 = 22.33, p = .02),
and clinical response (Supplemental Table S5), none of these
survived correction for multiple comparisons. In addition to
testing each ROI separately for an association with clinical
response, we also conducted a multiple linear regression of
clinical response against all anatomical ROIs simultaneously.
The results of this analysis can be found in the Supplemental
Results. Finally, there were no differences in gray matter
changes between responders and nonresponders or between
remitters and nonremitters (Supplemental Results,
Supplemental Figure S4).
Biological P
DISCUSSION

We here report that the structural changes following ECT in
depression are broadly distributed. Using the largest sample
size to date, we observed volumetric increases in widespread
cortical and subcortical gray matter areas that varied based on
the number of ECTs and mode of electrode placement. The
subcortical gray matter changes were inversely associated
with changes in ventricle volumes, while white matter volume
remained unchanged. Finally, the volume enlargements of
cortical and subcortical gray matter regions did not signifi-
cantly relate to treatment outcome. Thus, our results indicate
that gross volumetric increases of specific cortical or subcor-
tical regions may not serve as viable biomarkers of clinical
response.

As in our previous study, the gray matter volumetric effects
were strongly related to number of ECTs and mode of elec-
trode placement (5). Thus, volumetric changes of a broad set
of brain regions beyond the hippocampus scaled positively
with the number of ECTs. Although the gray matter expansion
was general, the effects predominated in regions closest to the
temporal electrodes, which are subjected to the highest elec-
trical stimulation. Moreover, the subcortical volumetric
changes varied based on electrode placement, and thus,
compared with BL electrode placement, RUL led to more right
lateralized effects (38). This fits with computational modeling of
electrical fields demonstrating more diffuse brain stimulation
with BL than with RUL (39,40) and suggests that the neuro-
trophic response to ECT is not related only to its capacity to
generate generalized seizure activity. Indeed, preclinical
models have demonstrated a dose-dependent association
between stimulus charge and dendritic arborization (41),
implying that the electric field impacts ECT-related neuro-
plastic processes. However, although the regional distribution
of the subcortical volumetric changes varied based on mode of
electrode placement, it was independent of number of RUL
versus BL ECT sessions. Accordingly, the relationship be-
tween ECT electric field distribution and whole-brain changes
in gray and white matter warrants further investigations.

While the majority of studies investigating the neurobio-
logical underpinnings of ECT have reported that ECT alters
specific brain regions or neural networks, we found wide-
spread volumetric increases encompassing most cortical and
subcortical gray matter regions. Moreover, the subcortical
sychiatry March 1, 2020; 87:451–461 www.sobp.org/journal 457
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volumetric enlargements were negatively associated with
ventricle volumes, which accords with the Monro-Kellie doc-
trine stating that the sum of volumes of intracranial compart-
ments is constant (37). A number of neurophysiological,
immunological, and neurotrophic processes may contribute to
the gray matter volumetric expansions, and these may not
necessarily coincide with the ECT therapeutic effects. Neuro-
trophic factors supporting the growth and maintenance of
neurons are upregulated in plasma of ECT-treated patients
(42,43). In concert, preclinical studies have demonstrated
increased levels of neurotrophic factors including brain-
derived neurotrophic factor in the hippocampus and the pre-
frontal cortex following ECS (44), potentially resulting in an
absolute increase in number of cells, dendrites, or synapses,
which may be detected by T1 magnetic resonance imaging
sequences (45,46). In addition to the neural effects, ECS also
induces proliferation (21) and activation (47) of glial cells in
other limbic and paralimbic brain regions, and the glial cell
proliferation has been linked to hippocampal volumetric in-
creases (20). Alternatively, volume expansion may be ascribed
to changes in extracellular fluid, in either the vascular or the
extravascular compartments. Neurotrophic processes are
inevitably linked to vascular changes (48,49), and thus most
neurotrophic factors also possess some angiogenic proper-
ties. This finding is further substantiated by studies reporting
focal and global changes in brain perfusion (50,51) following
ECT, and the regional distribution of these changes corre-
sponds to those observed in brain volumetric studies. Finally,
inflammatory mechanisms may be associated with, or be a
mediator of, the various trophic and vascular effects (10,52).

The amygdala and hippocampus showed the largest effect
sizes in the present study, which accords with pathophysio-
logical models of depression positing dysfunctional limbic
circuits as a core mechanism of these disorders (13,53). In
addition, the findings coincide with meta- and mega-analyses
of structural changes following ECT, reporting robust volu-
metric expansions of hippocampus and the amygdala (5,6),
potentially as a result of neurogenesis in the hippocampus
(14,54,55). However, consistent with our previous results, the
ECT-related volumetric changes of these brain regions did not
predict clinical response (5). Of note, animal models suggest
specificity of the neuroplastic effects, with neurogenesis
occurring in the dentate gyrus of the hippocampus (14) and
attenuated dendritic arborization in the basolateral complex of
the amygdala (56). Furthermore, the expression of voltage-
gated calcium channels in the basolateral complex and the
dentate gyrus are selectively downregulated by ECS (57),
which is likely to improve neuronal survival (58). As such,
studies of global volumetric changes of these brain areas may
not be sensitive to ECT outcome, which is appreciated by
recent studies further dividing these brain areas into their
respective subfields. The results of these preliminary studies
indicate differential effects of ECT on hippocampal subfields or
amygdala nuclei (59–61), and the volumetric changes of the
dentate gyrus may be indicative of the clinical response (61).

Our finding of large and relatively comparable volumetric
treatment effects in numerous brain regions suggests a rather
unspecific effect of ECT; thus, an association with clinical
response may appear unlikely. Although associations between
the volumetric changes of certain striatal and prefrontal brain
458 Biological Psychiatry March 1, 2020; 87:451–461 www.sobp.org/j
regions and clinical response were found at an uncorrected
significance level, none of these survived correction for multi-
ple comparisons. Accordingly, we could speculate that mea-
sures of large-scale volumetric changes of the brain may not
relate to the therapeutic effects of ECT. Alternatively, the
structural changes induced by ECT may precede or lag behind
clinical response, or the effects of seizure therapy on brain
volumes may mask subtle effects related to treatment
outcome. ECT may modulate the differentiation and function of
serotonergic neurons through its effect on brain-derived neu-
rotrophic factor levels (42,62). Furthermore, ECT leads to a
global decrease in postsynaptic serotonin 1A receptor binding
(63), similar to standard antidepressant treatment (64). Despite
co-occurring neuroplastic and molecular effects, only the
molecular effects may be a key mechanism underlying the
therapeutic success of ECT. Thus, if successful ECT treatment
depends on rearrangement of neuronal networks on a molec-
ular level, this will most likely not be captured by investigations
of whole-brain volumetric effects.

We did not observe significant whole-brain changes in white
matter volume. This may at first seem contradictory, as pre-
vious studies have reported altered structural and functional
brain connectivity ascribed to white matter changes (65,66).
However, the majority of studies have investigated the diffu-
sion properties of (specific) white matter tracts, while we report
on the whole-brain white matter volume. Finally, it is possible
that white matter changes lag behind gray matter increase, and
thus our follow-up time may not have been sufficient to
discover such changes.

One limitation of the present study rests in the heterogeneity
of the patient sample. Although we explicitly modeled differ-
ences between sites and ran all raw data through the same
processing pipeline, sources of heterogeneity are likely to
remain. However, heterogeneity allows greater generalizability
and translational value, as indeed the patients’ eligible for ECT
varies across the globe. A second limitation is that the RUL
versus BL electrode placements were not counterbalanced,
and thus any patient characteristic leading to the preference of
electrode placement was also not controlled for. A third limi-
tation is that not all sites included healthy control subjects. To
avoid potential biases introduced by the control sample, we
therefore used 2 independent analyses when testing for volu-
metric changes in patients. Finally, we note that previous
studies investigating cortical gray matter changes following
ECT have mainly used cortical thickness and not cortical vol-
ume. However, volume change is the only parameter that can
be applied to all tissue compartments (i.e., cortical gray matter,
subcortical gray matter, white matter, and cerebrospinal fluid
spaces), which permits a full assessment of brain structural
changes following ECT.

In conclusion, we found that ECT induces volumetric en-
largements of widespread cortical and subcortical gray matter
regions, supporting the assumption that ECT induces trophic
processes in brain gray matter. The subcortical gray matter
expansion scaled negatively with ventricle size, while white
matter volume remained unchanged; thus, the sum of volumes
of intracranial compartments remained unchanged. Although
measurements of gross volumetric enlargements were not
related to ECT clinical response, future studies should inves-
tigate whether microstructural or molecular changes related to
ournal

http://www.sobp.org/journal


Whole-Brain Structural Changes Following ECT
Biological
Psychiatry
brain gray matter could explain clinical outcome. Delineating
the macroscopic brain changes following ECT is an important
step toward understanding ECT’s mechanisms of action, ulti-
mately leading to more effective personalized treatment ap-
proaches for depressive disorders.
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